Numerical Solutionof Partial Differental Equations:

The generalsecond —order linear partial
differental equation is of the form:

2 2 2

Aa—g+B ol +C8—l:+ D@_u+ E@_u+ Fu=G
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Which can be written as:

Au, +Bu, +Cu, +Du, +Eu +Fu=G ..... (2
Where A,B,C,......,G are all functionsof x&vy




au,, +2bu, +cu, =F(x,y,u,u,u,)
u 1s the unknown function
Equations of form (1) can be classified with respect
to the sign of thediscriminant:
As=B?—-4AC
In the following ways:
(1) If As<O0 at a point inthe (x,y) plane the equation

Is said to be elliptic type

(2) If As >0 at that point Is said to be hyperbolictype

(3) Parabolic type when As=0.




Elliptic type 4ac—b* >0  Laplace equation
Parabolictype 4ac—b*=0 Heat equation

Heperbolictype 4ac—-Db* <0 Wave equation
In the following, we will restrict our solvesto three
simple particularcases of Eqg. (1); namely:

u, +u, =0 (the Laplace equation)
u, — izutt =0  (the wave equation
C

u,—u, =0 (the heat conduction equation



Finite — Difference Approximatons to derivative :

Let the (x,y) plane be dividedinto a network of
rectan gles of sides Ax=h and Ay =k by drawing

the setsof lines:

X =1h; 1=0,1 2, 3, ......

y = JK; ]=0,1 2, 3, .....

The points of Intersection of these families of linesare
called mesh points, lattice points or grid points.




Then:

u. . — u. 5

U, = L . )+ 0(h) Forward dif ferenc
Ujj — Uji—1,j :

U, = r + 0(h) Backward dif ferenc
u. . — u._ :

U, = l+1,]2h =2 4 0(h?)Centraldif ferenc

and;

Uy, = 1—1,j L] 1+1,j n O(hz)

2
Where u; ; = u(ih, jk) = u(x,y)



Similarly we havethe approximatons:

U —Uu. .

u, = "j+1k 14 0(k) Forward differenc
U; j — U j—1 -

u, =— ” ~—+0(k) Backward differenc
ui,j+1_ui,j—1 2 -

u, = o +0(k?) Central differenc

and;

u = ui,j—l_zui,j +ui,j+1+0(k2)

Yy k2



We can now obtain the finite-difference
analogues of partial differential equations by
replacing the derivatives in any equation by
their corresponding difference approximation

given above.



Thus, the Laplace equationin two dimension namely;
u, +u, =0
has its finite— differenceanalogue;

1 1
F[UHLj —2U; ; +ui—1,j]+p[ui,j+l —2u; ; +U; ;4,]=0

If h=k, this gives

1

U-’- __[u|+1 J u—1,j +ui,j+1+ui,j—1] (a)

Which shows that the valueof u at any point is the mean
of its valuesat the four neighbourng points. This is called

the standard five— point formula




The standard five— point formula Is written:

ui+1,j T ui—l,j +U; j+1 +U; ji-1 4ui,j =0
Dirichlet
U 4 problem
@
Hi—l;j Hf;j Hf+1,j
@ @ @
uz’J—l
@




-1 ¥ i+1,]

.

Tikrit University-Civil Engineering
Department Third Stage Eng.Anal.& Num.
Meth. Dr.Adnan Jayed Zedan



Also, instead of formula(a), we may use the following formula:

1
U = Z[ui—l, i T Ui gt Uiy g H Ui ]

Which uses the functionvaluesat the diagonal points.

And iIs thereforecalled the diagonal five— point formula

u Ui

i—1 j— i+1, 7-1




Laplace’s equation:

We wish to solve Laplace's equation:
Uy, +u,,=0

in a boundary region R with boundary C. As in Dirichlet's

problem, let the value of v be specified every where on

C. For simplicity, let R be a square region so that it can be

divided into a network of small squares of side A. Let the

values of u(x, y)on the boundary Cbe given by (/and let
the interior mesh points and the boundary points be as in

the figure below:



C13 C1l2 Cl1 C10 C9
c14 uv’/ usd u9 cs
C15 ud ub u6 C7
C16 ul uz u3 C6

C1 C2 C3 C4 C5



We first use the diagonal five— point formulaand
compute u.,u,,U,, U, and u,in this order, Thus we obtain
Us = %[C1 +C; +C, +C..];

1
U; = Z[C15 + U + C11 + C13];

1
Uy = Z[u5 +C, +C, +C,,];

u, = %[C1 +C,+u. +C,]and

U, =%[C3 +C. +C, +u.]



We then compute, inthis order, the remaining
quantities such ug,u,,u, and u, by the standard
five— point formula Thus we have

1
Ug = Z[US +U, +C,, +C,];

1
u, = Z[u1 +U; +U, +C.J;

U = %[u5 +U, +C, +U,] and

u, :%[C3 +U, +U; +U,]



When once all the u.(1=1,2,3,......9) are computed,
their accuracy can be improved by any of the
Iterative methods described below:

(1) Jacobi's method :

Let u;” denote the n" iterative value of u;
An Iterative procedure to solve the Eqg.(a) Is:

j [

1
(n+1) __ (n) (n) (n) (n)
Uiy ° = Z[ui—l,j +ULT U U]

for the Interior mesh points. This Is called the
point Jacobi method.



(2) Gauss— Seidal method:

The method usesthe latest iterativevalues
available and scans the mesh points systematially
from left to right along successive rows.

The iterative frmulais:

1
(n+1) (n+1) (n) (n+1) (n)
Uiy~ = Z[ui—l,j + U U U]

It can be shown that the Gauss— Seidal scheme
converges twice as fast as the Jacobi scheme.



Example:
Solve Laplace equation for the figure given below:

50 100 100 100 50
0 u’/ us8 u9 0
0 ud us u6 0
0 ul u2 u3 0
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Solution:
We first compute the quantities u.,u,,u,,u, and u,

by using the diagonal five— point formula:

e = E[O+ 0+50+50]=
4

e = 1[o +25+100+50] =43.75
4

U = 1[25+0+50+100]=43.75
4

U = 1[O+ 0+ 25+0]=6.25
4

] = 2[0+O+O+25] 6.25



We now compute; ug,u,,us and u, successivey
by using the standard five— point formula:

U = [25+ 43.75+100+ 43.75]=53.125
us = 2[0+6 25+ 25+ 43.75] =18.75
u = %[25+ 6.25+0+43.75]=18.75

us = %[6 25+ 0+6.25+ 25]=9.375



We havethus obtainedthe first approximatons of all the
nine mesh points and we can now use one of the aterative
formula, by using Gauss— Seidal formula:

1
(n+1) (n+1) (n) (n+1) (n)
ui,j _Z[ui—l,j +ui+1,j +ui,j—1 +ui,j+1]



6.25 9.38 6.25 18.75 25.00 18.75 43.75 53.13 43.75

703 957 7.08 1894 2510 18.98 43.02 52.97 42.99
/.13 983 720 18.81 25.15 18.84 4294 52.77 42.90
/.16 9.88 7.18 18.81 25.08 18.79 42.89 52.72 42.88
/.17 986 7.16 18.78 25.04 18.77 42.88 52.70 42.87
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1
(2) (2) (1) (2) (1)
U, 4[U01+u21+u10+u12]

= %[O +9.38+0+18.75] =7.03

1
(2) (2) (1) (2) (1)
U, Z[U11+u31+u20+u22]

= %[7.03+ 6.25+0+25] =9.57



