Numerical Solution of Partial Differential Equations:

The general second – order linear partial differential equation is of the form:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = G$$

Which can be written as:

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$
(1)

Where A, B, C, \dots, G are all functions of x & y

 $au_{xx} + 2bu_{xy} + cu_{yy} = F(x, y, u, u_x, u_y)$

u is the unknown function.

Equations of form (1) can be classified with respect to the sign of the discriminant:

$$\Delta s = B^2 - 4AC$$

in the following ways:

- (1) If $\Delta s < 0$ at a point in the (x, y) plane, the equation is said to be elliptic type.
- (2) If $\Delta s > 0$ at that point is said to be hyperbolic type.
- (3) Parabolic type when $\Delta s = 0$.

Elliptic type $4ac-b^2 > 0$ Laplace equation

Parabolic type $4ac-b^2=0$ Heat equation

Heperbolic type $4ac-b^2 < 0$ Wave equation

In the following, we will restrict our solves to three simple particular cases of Eq. (1); namely:

$$u_{xx} + u_{yy} = 0$$
 (the Laplace equation)

$$u_{xx} - \frac{1}{c^2}u_{tt} = 0$$
 (the wave equation)

$$u_{xx} - u_t = 0$$
 (the heat conduction equation)

Finite - Difference Approximations to derivatives:

Let the (x, y) plane be divided into a network of rectangles of sides $\Delta x = h$ and $\Delta y = k$ by drawing the sets of lines:

$$x = ih;$$
 $i = 0, 1, 2, 3, \dots$

$$y = jk$$
; $j = 0, 1, 2, 3, \dots$

The points of intersection of these families of lines are called mesh points, lattice points or grid points.

Then:

$$u_{x} = \frac{u_{i+1,j} - u_{i,j}}{k} + 0(h) Forward \ differenc$$

$$u_{x} = \frac{u_{i,j} - u_{i-1,j}}{h} + 0(h) Backward differenc$$

$$u_{\chi} = \frac{u_{i+1,j} - u_{i-1,j}}{2h} + 0(h^2)Centraldifferenc$$

and;

$$u_{xx} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + 0(h^2)$$

Where
$$u_{i,j} = u(ih, jk) = u(x, y)$$

Tikrit University-Civil Engineering

Department Third Stage Eng. Anal. & N

Similarly we have the approximations:

$$u_{y} = \frac{u_{i, j+1} - u_{i, j}}{k} + 0(k)$$

Forward differenc

$$u_y = \frac{u_{i,j} - u_{i,j-1}}{k} + 0(k)$$

Backward differenc

$$u_{y} = \frac{u_{i,j+1} - u_{i,j-1}}{2k} + O(k^{2})$$

Central differenc

and;

$$u_{yy} = \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2} + 0(k^2)$$

We can now obtain the finite-difference analogues of partial differential equations by replacing the derivatives in any equation by their corresponding difference approximation given above.

Thus, the Laplace equation in two dimension, namely,

$$u_{xx} + u_{yy} = 0$$

has its finite-difference analogue;

$$\frac{1}{h^2}[u_{i+1,j} - 2u_{i,j} + u_{i-1,j}] + \frac{1}{k^2}[u_{i,j+1} - 2u_{i,j} + u_{i,j-1}] = 0$$

If h = k, this gives,

$$u_{i,j} = \frac{1}{4} [u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}]$$
 (a)

Which shows that the value of u at any point is the mean of its values at the four neighbouring points. This is called the standard five—point formula.

The standard five-point formula is written:

$$u_{i+1, j} + u_{i-1, j} + u_{i, j+1} + u_{i, j-1} - 4u_{i, j} = 0$$

Dirichlet problem

Tikrit University-Civil Engineering
Department Third Stage Eng.Anal.& Num.
Meth. Dr.Adnan Jayed Zedan

Department Third Stage Eng. Anal. & Num.

Meth. Dr. Adnan Jayed Zedan

Also, instead of formula (a), we may use the following formula:

$$u_{i,j} = \frac{1}{4} [u_{i-1,j-1} + u_{i+1,j-1} + u_{i+1,j+1} + u_{i-1,j-1}]$$

Which uses the function values at the diagonal point s.

And is thereforecalled the diagonal five-point formula.

Laplace's equation:

We wish to solve Laplace's equation:

$$u_{xx}+u_{yy}=0$$

in a boundary region R with boundary C. As in Dirichlet's problem, let the value of u be specified every where on C. For simplicity, let R be a square region so that it can be divided into a network of small squares of side h. Let the values of u(x, y) on the boundary C be given by Ci and let the interior mesh points and the boundary points be as in the figure below:

Tikrit University-Civil Engineering
Department Third Stage Eng.Anal.& Num.
Meth. Dr.Adnan Jayed Zedan

Meth. Dr. Adnan Jayed Zedan

We first use the diagonal five – point formula and compute, u_5, u_7, u_9, u_1 and u_3 in this order, Thus we obtain,

$$u_5 = \frac{1}{4}[C_1 + C_5 + C_9 + C_{13}];$$

$$u_7 = \frac{1}{4}[C_{15} + u_5 + C_{11} + C_{13}];$$

$$u_9 = \frac{1}{4}[u_5 + C_7 + C_9 + C_{11}];$$

$$u_1 = \frac{1}{4} [C_1 + C_3 + u_5 + C_{15}]$$
 and

$$u_3 = \frac{1}{4} [C_3 + C_5 + C_7 + u_5]$$

We then compute, in this order, the remaining quantities, such u_8 , u_4 , u_6 and u_2 by the standard five – point formula. Thus we have,

$$u_8 = \frac{1}{4}[u_5 + u_9 + C_{11} + C_7];$$

$$u_4 = \frac{1}{4}[u_1 + u_5 + u_7 + C_{15}];$$

$$u_6 = \frac{1}{4}[u_5 + u_3 + C_7 + u_9]$$
 and

$$u_2 = \frac{1}{4} [C_3 + u_3 + u_5 + u_1]$$

When once all the u_i (i = 1,2,3,......9) are computed, their accuracy can be improved by any of the iterative methods described below:

(1) Jacobi's method:

Let $u_{i,j}^{(n)}$ denote the n^{th} iterative value of $u_{i,j}$. An iterative procedure to solve the Eq.(a) is:

$$u_{i,j}^{(n+1)} = \frac{1}{4} \left[u_{i-1,j}^{(n)} + u_{i+1,j}^{(n)} + u_{i,j-1}^{(n)} + u_{i,j+1}^{(n)} \right]$$

for the interior mesh points. This is called the point Jacobi method.

(2) Gauss – Seidal method:

The method uses the latest iterative values available and scans the mesh points systematically from left to right along successive rows.

The iterative frmula is:

$$u_{i,j}^{(n+1)} = \frac{1}{4} \left[u_{i-1,j}^{(n+1)} + u_{i+1,j}^{(n)} + u_{i,j-1}^{(n+1)} + u_{i,j+1}^{(n)} \right]$$

It can be shown that the Gauss – Seidal scheme converges twice as fast as the Jacobi scheme.

Example:

Solve Laplace equation for the figure given below:

Solution:

We first compute the quantities, u_5, u_7, u_9, u_1 and u_3 by using the diagonal five – point formula:

$$u_5^{(1)} = \frac{1}{4}[0+0+50+50] = 25$$

$$u_7^{(1)} = \frac{1}{4}[0 + 25 + 100 + 50] = 43.75$$

$$u_9^{(1)} = \frac{1}{4}[25 + 0 + 50 + 100] = 43.75$$

$$u_1^{(1)} = \frac{1}{4}[0+0+25+0]=6.25$$

$$u_3^{(1)} = \frac{1}{4} [0 + 0 + 0 + 25] = 6.25$$
Tikrit University-Civil Engineering Department Third Stage Eng. Anal. & Num.

Meth. Dr. Adnan Jayed Zedan

We now compute; u_8, u_4, u_6 and u_2 successively by $u\sin g$ the $s\tan dard$ five – point formula:

$$u_8^{(1)} = \frac{1}{4}[25 + 43.75 + 100 + 43.75] = 53.125$$

$$u_4^{(1)} = \frac{1}{4}[0 + 6.25 + 25 + 43.75] = 18.75$$

$$u_6^{(1)} = \frac{1}{4}[25 + 6.25 + 0 + 43.75] = 18.75$$

$$u_2^{(1)} = \frac{1}{4}[6.25 + 0 + 6.25 + 25] = 9.375$$

We have thus obtained the first approximations of all the nine mesh points and we can now use one of the aterative formula, by using Gauss—Seidal formula:

$$u_{i,j}^{(n+1)} = \frac{1}{4} \left[u_{i-1,j}^{(n+1)} + u_{i+1,j}^{(n)} + u_{i,j-1}^{(n+1)} + u_{i,j+1}^{(n)} \right]$$

n	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆	u ₇	u ₈	u ₉
1	6.25	9.38	6.25	18.75	25.00	18.75	43.75	53.13	43.75
2	7.03	9.57	7.08	18.94	25.10	18.98	43.02	52.97	42.99
3	7.13	9.83	7.20	18.81	25.15	18.84	42.94	52.77	42.90
4	7.16	9.88	7.18	18.81	25.08	18.79	42.89	52.72	42.88
5	7.17	9.86	7.16	18.78	25.04	18.77	42.88	52.70	42.87

$$u_{1,1}^{(2)} = \frac{1}{4} \left[u_{0,1}^{(2)} + u_{2,1}^{(1)} + u_{1,0}^{(2)} + u_{1,2}^{(1)} \right]$$

$$u_1 = \frac{1}{4}[0 + 9.38 + 0 + 18.75] = 7.03$$

$$u_{2,1}^{(2)} = \frac{1}{4} \left[u_{1,1}^{(2)} + u_{3,1}^{(1)} + u_{2,0}^{(2)} + u_{2,2}^{(1)} \right]$$

$$u_2 = \frac{1}{4}[7.03 + 6.25 + 0 + 25] = 9.57$$